Book 6) Integral Calculus
Topics covered: Indefinite Integration
Definite Integration A
Its Applications.
Topic 1) Indefinite Integration.

$$T_{i} = \int \frac{(10x^{9} + 10^{5} \log_{2} 10)}{(x^{10} + 10^{2})} dx \text{ is equal to}$$

$$S. \text{ If } A = \int e^{x} \sin x \text{ and } B = \int e^{x} \cos x dx, equal to$$

$$a) 10^{x} + x^{10} + c \qquad (b) 10^{x} - x^{10} + c \qquad equal to$$

$$c) 10^{x} + x^{10} \qquad (d) \log_{x}(10^{x} + x^{10}) + c \qquad (a) \frac{e^{2x}}{2} \qquad (b) \frac{1}{2}e$$

- **1.** *l* (8 ($2. \quad \int \left(\frac{2+\sin 2x}{1+\cos 2x}\right) e^x dx =$ (c) $\frac{e}{1}$ (b) $-e^x \cot x + c$ (a) $e^x \cot x + c$ 6 (c) $-e^x \tan x + c$ (d) $e^x \tan x + c$ 3. $I = \int \sqrt{1 + 2 \tan x (\sec x + \tan x)} dx$ is equal to (a) $\log\left(\frac{e^{x}+3}{e^{x}+2}\right)$ (a) $\log_e |\sec^2 x + \tan x \sec x| + c$ (c) $\frac{1}{2} \log \left(\frac{e^x + 2}{e^x + 3} \right)$ (b) $\log_{e} |1 + \tan x (\sec x + \tan x)| + c$ (c) $\log_e \left| \sin x (\sec x - \tan x) \right| + c$ (d) none of these 4. $\int \frac{x^2 + x - 1}{x^2 + x - 6} dx =$ (a) $x + \log(x+3) + \log(x-2) + c$ (b) $x - \log(x+3) + \log(x-2) + c$ (c) $x - \log(x+3) - \log(x-2) + c$ (d) none of these (\mathbf{c})
- then $A^2 + B^2$ is

(a)
$$\frac{e^{2x}}{2}$$
 (b) $\frac{1}{2}e$
(c) $\frac{e^{3x}}{2}$ (d) none of these

5.
$$\int \frac{e^x}{dx} dx$$
 equals

$$\int e^{2x} + 5e^{x} + 6$$

+ c (b)
$$\log\left(\frac{e^{x}+2}{e^{x}+3}\right) + c$$

 $\left(\frac{2}{6}\right) + c$ (d) none of these

7. If
$$I = \int x \log_e \left(1 + \frac{1}{x} \right) dx$$

= $p(x) \log_e (x+1) + g(x)x^2 + Lx + c$, then

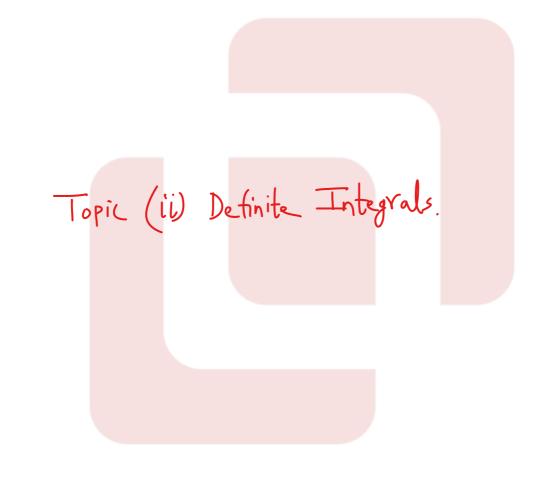
(a)
$$p(x) = \frac{1}{2}x^2$$
 (b) $g(x) = \log_e x$
(c) $L = 1$ (d) none of these

(d) $e^x \frac{\sqrt{1-x^{2n}}}{1-x^n} + c$

(b) $\frac{x^x}{\log x} + c$

(d) $x^{x}(x+1)+c$

(b) $\log[\log(\log x)]$ (d) none of these


(b) $\frac{4}{3}\left(\frac{x+2}{x-1}\right)^{1/4} + c$

(d) $\frac{1}{3} \left(\frac{x+2}{x+1} \right)^{1/4} + c$

8.
$$\int \frac{dx}{4\sin^2 x + 4\sin x \cos x + 5\cos^2 x} \text{ is equal to}$$
15. The value of $\int e^x \frac{1 + nx^{x+1} - x^{2x}}{(1 - x^x)\sqrt{1 - x^{2x}}} dx$ is
(a) $\tan^{-1}\left(\tan x + \frac{1}{2}\right) + c$ (b) $\frac{1}{4}\tan^{-1}\left(\tan x + \frac{1}{2}\right) + c$
(c) $4\tan^{-1}\left(\tan x + \frac{1}{2}\right) + c$ (d) none of these
9. If *n* is an odd positive integer, then $\int |x^x| dx$ is equal to
(a) $\left|\frac{x^{n+1}}{n+1}\right| + c$ (b) $\frac{x^{n+1}}{n+1} + c$
(c) $\left|\frac{x^n}{n+1}\right| + c$ (c) $\left|\frac{x^n}{n+1}\right| + c$
(d) $\left|\frac{x^n}{n+1}\right| + c$
(e) $\left|\frac{x^n}{n+1}\right| + c$ (f) $\left|\frac{x^{n+1}}{n+1}\right| + c$
(f) $\left|\frac{x^n}{1 - x^n}\right| + c$
(g) $\left|\frac{x^n}{n+1}\right| + c$ (h) $\frac{x^{n+1}}{n+1} + c$
(h) $\left|\frac{x^n}{n+1}\right| + c$
(h) $\left|\frac{x$

ANSWERS									
							8. (b)		10. (b)
11. (c)	12. (a)	13. (b)	14. (a)	15. (d)	16. (b)	17. (c)	18. (b)	19. (a)	20. (d)

Qubit

5.
$$\lim_{n \to \infty} \sum_{r=1}^{n} \left(\frac{r^{3}}{r^{4} + n^{4}} \right) \text{ equals}$$
12. If
(a) $\log 2$ (b) $\frac{1}{2} \log 2$ (c) $\frac{1}{3} \log 2$ (d) $\frac{1}{4} \log 2$
13. If
(a) $\frac{1}{9} \log 2$ (d) $\frac{1}{4} \log 2$
14. If
(b) $\frac{1}{9} (t) dt = x + \int_{x}^{1} t_{r} f(t) dt$, then the value of $f(1)$ is
(a) $\frac{1}{2}$ (b) 0
(c) 1 (d) $-(1/2)$
17.
$$\lim_{n \to \infty} \sum_{r=2n+1}^{3n} \frac{n}{r^{2} - n^{2}}$$
 is equal to
(a) $\log \sqrt{\frac{2}{3}}$ (b) $\log \sqrt{\frac{3}{2}}$
15. If
(c) $\log \frac{2}{3}$ (d) $\log \frac{3}{2}$
15. If
(c) $\log \frac{2}{3}$ (d) $\log \frac{3}{2}$
15. If
(c) $\log \frac{2}{3}$ (d) $\log \frac{3}{2}$
16. If
(c) $\log \frac{2}{3}$ (d) $\log 2\frac{3}{2}$
17. If
(c) $\log \frac{2}{3}$ (d) $\log 2\frac{3}{2}$
18. Let $f(x) = x - [x]$ for every real number x , where [.]
denotes the greatest integer function. Then $\int_{-1}^{1} f(x) dx$ is
(a) 1 (b) 2
16. If
(c) 0 (d) $1/2$
17. If
(c) 0 (d) $1/2$
18. If
(c) $\frac{e^{\pi/2}}{2e^{2}}$ (b) $2e^{2}e^{\pi/2}$
17. If
(a) $\frac{e^{\pi/2}}{2e^{2}}$ (b) $2e^{2}e^{\pi/2}$
17. If
(a) $\frac{e^{\pi/2}}{2e^{2}}$ (d) none of these
10. If f is a continuous function, then $\frac{1}{k} \int_{ak}^{b} f(\frac{x}{k}) dx$ is
(a) $\frac{1}{k} \int_{a}^{b} f(x) dx$ (d) none of these
10. If f is a function satisfying $f(\frac{1}{x}) + x^{2}f(x) = 0$ for
all non-zero x , then $\int_{x=0}^{\cos e^{\theta}} f(x) dx$ equals
(a) $\sin \theta + \csc \theta$ (b) $\sin^{2} \theta$
(c) $\csc^{2}\theta$ (d) none of these
15. If $f(x) = 0$ for
(c) $\cos^{2}\theta$ (d) none of these
16. If $f(x) = 0$ for $\frac{1}{4} = 0$ for $\frac{1$

12. If
$$I_1 = \int_0^{\pi} f(|\cos x|) dx$$
 and $I_2 = \int_0^{5\pi} f(|\cos x|) dx$, then $(n \in N)$
(a) $nI_1 = 5I_2$ (b) $I_1 + I_2 = n + 5$
(c) $\frac{I_1}{n} = \frac{I_2}{5}$ (d) none of these
13. $\lim_{n \to \infty} \left[\sin \frac{\pi}{2n} \cdot \sin \frac{2\pi}{2n} \cdot \sin \frac{3\pi}{2n} \cdots \sin \frac{(n-1)\pi}{n} \right]^{1/n}$ is equal to
(a) $1/2$ (b) $1/3$
(c) $1/4$ (c) none of these
14. The value of k if $\int_0^{\pi/3} \frac{\cos x}{3 + 4\sin x} dx = k \cdot \log\left(\frac{3 + 2\sqrt{3}}{3}\right)$ is
equal to
(a) $1/2$ (b) $1/3$
(c) $1/4$ (c) none of these
14. The value of k if $\int_0^{\pi/3} \frac{\cos x}{3 + 4\sin x} dx = k \cdot \log\left(\frac{3 + 2\sqrt{3}}{3}\right)$ is
equal to
(a) $1/2$ (b) $1/3$
(c) $1/4$ (c) $1/8$
15. If $[x]$ stands for the greatest integer function, the value
of $\int_4^0 \frac{[x^2]}{[x^2 - 28x + 196] + [x^2]} dx$ is
(a) 0 (b) 1
(c) 3 (d) none of these
16. The value of $\int_{-\pi/4}^{\pi/4} \frac{dx}{\sec^2 x(1 + \sin x)}$ is
(a) $\pi/4$ (b) π
(c) $\pi/2$ (d) 2π
17. If $f(a + b - x) = f(x)$, then $\int_a^b xf(x)dx$ is equal to
(a) $\frac{a + b}{2}\int_a^b f(b - x)dx$ (b) $\frac{a + b}{2}\int_a^b f(x)dx$
(c) $\frac{b - a}{2}\int_a^b f(x)dx$ (d) none of these
18. Let $f(x) = \min(\tan x, \cot x), 0 \le x \le \frac{\pi}{2}$, then $\int_0^{\pi/2} f(x)dx$
(a) $\ln 2$ (b) $\ln \sqrt{2}$
(c) $\ln 3$ (d) none of these
19. If $\int_0^{10} f(x)dx = a$, then $\sum_{r=1}^{100} \left[\int_0^1 f(r - 1 + x)dx \right] =$
(a) $100a$ (b) a
(b) $\ln \sqrt{2}$
(c) 0 (c) 0 (d) $10a$
20. If $f(x) = \int_{x^2}^{x^2 + 1} e^{-x^2} dt$, then $f(x)$ increases in
(a) $(2, 2)$ (b) no value of x
(c) $(0, \infty)$ (d) $(-\infty, 0)$

ANSWERS									
1. (b) 11. (d)	2. (a) 12. (c)	3. (d) 13. (c)	4. (b) 14. (c)	5. (d) 15. (c)	6. (a) 16. (c)	7. (b) 17. (b)	8. (a) 18. (a)	9. (c) 19. (b)	10. (b) 20. (d)

Qubit

Topic ili) Applications of Definite Integrals Qubit

1. The area of the curve $y^2 = (7-x)(5+x)$ above the x-axis and between the ordinates x = -5 and x = 1 is

- (a) 9π (b) 18π
- (c) 15π (d) none of these
- 2. The area bounded by $x^2 + y^2 2x = 0$ and $y = \sin \frac{\pi x}{2}$ in the upper half of the circle is (a) $\pi/2 - 4/\pi$ (b) $\pi/4 - 2/\pi$ (c) $\pi - 8/\pi$ (d) none of these

- 3. The area common to the circle $x^2 + y^2 = 64$ and the parabola $y^2 = 12x$ is equal to
 - (a) $\frac{16}{3}(4\pi + \sqrt{3})$ (b) $\frac{16}{3}(8\pi \sqrt{3})$ (c) $\frac{16}{3}(4\pi - \sqrt{3})$ (d) none of these
- 4. The area of the region bounded by $y = x^2$ and $y = \frac{2}{1 + x^2}$ is
 - (a) $\pi \frac{2}{3}$ (b) $\pi \frac{1}{2}$ (c) $2\pi - \frac{2}{3}$ (d) none of these
- 5. The area of the region formed by

$$x^{2} + y^{2} - 6x - 4y + 12 \le 0, \ y \le x \text{ and } x \le \frac{5}{2} \text{ is}$$
(a) $\frac{\pi}{6} - \frac{\sqrt{3} + 1}{8}$ (b) $\frac{\pi}{6} + \frac{\sqrt{3} + 1}{8}$
(c) $\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}$ (d) none of these

- 6. The curve $y = a\sqrt{x} + bx$ passes through the point (1, 2) and the area enclosed by the curve, the x-axis and the line x = 4 is 8 sq. units. The values of a and b are (a) a = 4, b = -2 (b) a = 3, b - 1(c) a = -3, b = 5 (d) a = -1, b = 3
- 7. The area of the closed figure bounded by y = x, y = -xand the tangent to the curve $y = \sqrt{x^2 - 5}$ at the point (3, 2) is

(b) $\frac{15}{2}$

(d) $\frac{\frac{2}{35}}{2}$

(a) 5

(c) 10

8. Let $f(x) = \min\left[\tan x, \cot x, \frac{1}{\sqrt{3}}\right], \forall x \in \left(0, \frac{\pi}{2}\right)$. Then the area bounded by y = f(x) and the x-axis is

(a)
$$\log\left(\frac{4}{3}\right) + \frac{\pi}{6\sqrt{3}}$$
 (b) $\log\left(\frac{2}{\sqrt{3}}\right) + \frac{\pi}{12\sqrt{3}}$
(c) $\log\left(\frac{4}{3}\right) + \frac{\pi}{12\sqrt{3}}$ (d) none of these

- 9. If A_m represents the area bounded by the curve $y = \log x^m$, the x-axis and the lines x = 1 and x = e, then $A_m + mA_{m-1}$ is (a) m (b) m^2
 - (c) $m^2/2$ (d) m^2-1

10. Let $f(x) = ax^2 + bx + c$, where $a \in \mathbb{R}^+$ and $b^2 - 4ac < 0$. The area bounded by y = f(x), the x-axis and the lines x = 0, x = 1 is

(a)
$$\frac{1}{6}[3f(1) + f(-1) + 2f(0)]$$

(b) $\frac{1}{12}[5f(1) + f(-1) + 8f(0)]$
(c) $\frac{1}{6}[3f(1) - f(-1) + 2f(0)]$
(d) $\frac{1}{12}[5f(1) - f(-1) + 8f(0)]$

11. Consider a rectangle *ABCD* formed by the points $A \equiv (0,0), B \equiv (6,0), C \equiv (6,0)$ and $D \equiv (0,4), P(x, y)$ is a moving interior point of the rectangle, moving in such a way that $d(P, AB) \leq \min \{(d(P, BC), d(P, CD), d(P, AD)\}$. Here, d(P, AB), d(P, BC), d(P, CD) and d(P, AD) represent the distances of the point P from the sides AB, BC, CD and AD, respectively. The area of the region representing all possible positions of the point P is

12. The area bounded by the curves $x = a \cos^3 t$ and $y = a \sin^3 t$ is

(a)
$$\frac{3\pi a^2}{8}$$
 (b) $\frac{3\pi a^2}{16}$
(c) $\frac{3\pi a^2}{32}$ (d) $3\pi a^2$

- 13. If the area bounded by the curve y = f(x), the lines x = 1, x = b and the x-axis is $(b-1)\cos(3b+4)$, b > 1, then f(x) is
 - (a) $(x-5)\sin(3x-4)$
 - (b) $(x-1)\sin(x+1) + (x+1)\cos(x-1)$
 - (c) $\cos(3x+4) 3(x-1)\sin(3x+4)$
 - (d) $(x-5)\cos(3x+4)$
- 14. The area common to the region determined by $y \ge \sqrt{x}$ and $x^2 + y^2 < 2$ has the value

(a)
$$\pi - 2$$
 (b) $2\pi - 1$
(c) $3\pi - \sqrt{2}/3$ (d) none of these

15. The area bounded by the curve $y = \max \{ \sin x, \cos x \}$, the x-axis and between the lines $x = \frac{\pi}{2}$ and $x = 2\pi$ is

(a)
$$\frac{(4\sqrt{2}-1)}{\sqrt{2}}$$
 (b) $(4\sqrt{2}-1)$
(c) $\frac{(4\sqrt{2}-1)}{2}$ (d) none of these

IISERAT Maths

Qubit Educational Services (by IISc Bangalore Alumnus)

- 16. Consider a triangle *OAB* formed by the points $O \equiv (0, 0)$ $A \equiv (2,0), B \equiv (1,\sqrt{3}). P(x, y)$ is an arbitrary interior point of the triangle, moving in such a way that d(P, OA) $+d(P, PB) + d(P, OB) = \sqrt{3}$, where d(P, OA), d(P, AB), d(P, OB) represent the distances of 'P' from the sides *OA*, *AB* and *OB*, respectively. The area of the region representing all possible positions of the point P is
 - (a) $2\sqrt{3}$ (b) $\sqrt{6}$
 - (c) $\sqrt{3}$ (d) none of these
- 17. If A_1 is the area enclosed by the curve xy = 1, the x-axis and the ordinates x = 1, x = 2 and A_2 is the area enclosed by the curve xy = 1, the x-axis and the ordinates x = 2, x = 4, then

- (a) $A_1 = 2A_2$ (b) $A_2 = 2A_1$ (c) $A_2 = 2A_1$ (d) $A_1 = A_2$
- 18. The slope to the curve y = f(x) at (x, f(x)) is 2x+1. If the curve passes through the point (1, 2), then the area of the region bounded by the curve y = f(x), the x-axis and the line x = 1 is

(a)
$$\frac{5}{6}$$
 (b) $\frac{6}{5}$
(c) $\frac{1}{6}$ (d) 6

ANSWERS

1. (a) 11. (a)	 3. (a) 13. (c)	 • •	6. (b) 16. (c)	 8. (a) 18. (a)	9. (b)	10. (d)

Qubit