
Book 7) Matrices.
Topics Covered : Determinant 4 Matrices
1.
$$\begin{bmatrix} \cos C & \tan A & 0 \\ \sin B & 0 & -\tan A \\ 0 & \sin B & \cos C \end{bmatrix}$$

(a) 1 (b) *i*
(b) *a*
(c) *a*
(c) *a*
(c) *b*
(c) *a*
(c) *b*
(c) *a*
(c) *b*
(c)

Qubit Educational Services (by IISc Bangalore Alumnus)

www.qubitpune.com

1. If A = dig(2, -1, 3) and B = dig(-1, 3, 2), then $A^2B =$ (a) dig(5, 4, 11) (b) dig(-4, 3, 18) (c) dig(3, 1, 8) (d) B

2. If
$$A = \begin{bmatrix} 2 & -1 \\ -7 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 1 \\ 7 & 2 \end{bmatrix}$, then $B^T A^T$ is

- (a) a null matrix
- (b) an identity matrix
- (c) a scalar matrix, but not an identity matrix

(d) such that
$$Tr(B^T A^T) = 4$$

3. Which of the following relations is true for

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 4 \\ -1 & 1 \end{bmatrix}?$$

(a) $(A + B)^2 = A^2 + 2AB + B^2$
(b) $(A - B)^2 = A^2 - 2AB + B^2$
(c) $AB = BA$

- (d) none of these
- 4. The trace of a skew-symmetric matrix is always equal to

- (a) $\sum_{ij} a_{ij}$ (b) $\sum_{ij} a_{ii}$ (c) zero (d) none of these
- 5. Which of the following is incorrect?

(a)
$$A^2 - B^2 = (A + B)(A - B)$$

- (b) $(A^T)^T = A$
- (c) $(AB)^n = A^n B^n$, where A and B commute

(d)
$$(A-I)(I+A) = 0 \iff A^2 = I$$

6. If
$$X = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$
, then value of X^n is
(a) $\begin{bmatrix} 3n & -4n \\ n & -n \end{bmatrix}$ (b) $\begin{bmatrix} 2+n & 5-n \\ n & -n \end{bmatrix}$
(c) $\begin{bmatrix} 3^n & (-4)^n \\ 1^n & (-1)^n \end{bmatrix}$ (d) none of these

- 7. If the matrix AB is a zero matrix, then
 - (a) A = 0 or B = 0
 - (b) A = 0 and B = 0
 - (c) it is not necessary that either A = 0 or B = 0
 - (d) all the above statements are wrong

Qubit Educational Services (by IISc Bangalore Alumnus)

8. If A^T is the transpose of a square matrix A, then (a) $|A| \neq |A^T|$

(b)
$$|A| = |A^T|$$

- (c) $|A| + |A^{T}| = 0$
- (d) $|A| = |A^T|$ only when A is symmetric

9. If
$$AB = 0$$
 for the matrices $A = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix}$
and $B = \begin{bmatrix} \cos^2 \phi & \cos \phi \sin \phi \end{bmatrix}$ then $\phi - \theta$ is

nd
$$B = \begin{bmatrix} \cos\phi\sin\phi & \sin^2\phi \end{bmatrix}$$
 then $\phi - \phi$

- (a) an odd multiple of $\pi/2$
- (b) an odd multiple of π
- (c) an even multiple of $\pi/2$
- (d) 0
- 10. If A is a skew-symmetric matrix and n is an even positive integer, then A^n is
 - (a) a symmetric matrix
 - (b) a skew-symmetric matrix
 - (c) a diagonal matrix
 - (d) none of these
- 11. If I_n is the identity matrix of order *n*, then $(I_n)^{-1}$ (a) does not exist (b) equals I_n (c) equals *O* (d) none of these

12. If A and B are symmetric matrices, then ABA is a

- (a) symmetric matrix (b) skew-symmetric matrix
- (c) diagonal matrix (d) scalar matrix
- 13. If A is a non-singular matrix and A^T denotes the transpose of A, then

(a)
$$|A| \neq |A^T|$$

(b) $|A \cdot A^T| \neq |A|^2$
(c) $|A^T \cdot A| \neq |A^T|^2$
(d) $|A| + |A^T| \neq 0$

14. Given $A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$; $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. If $A - \lambda I$ is a singular matrix then

matrix, then

- (a) $\lambda \in \phi$ (b) $\lambda^2 - 3\lambda - 4 = 0$ (c) $\lambda^2 + 3\lambda + 4 = 0$ (d) $\lambda^2 - 3\lambda - 6 = 0$
- 15. If for a matrix A of order 2, $A^2 + I = 0$, where I is the identity matrix, then A equals

(a)	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	(b) $\begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$
(c)	$\begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$	(d) $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

- 16. From the matrix equation AB = AC, we conclude that B = C provided
 (a) A is singular
 (b) A is non-singular
 (c) A is symmetric
 (d) A is square
- 17. If A is a square matrix of order 3, then the true statement is (where I is the unit matrix)
 - (a) det $(-A) = -\det A$
 - (b) det A = 0

(c)
$$\det(A+I) = 1 + \det A$$

(d) det
$$2A = 2 \det A$$

18. If A is a square matrix of order $n \times n$ and k is a scalar, then adj (kA) is equal to

(a)
$$k \operatorname{adj} A$$

(b) $k^{n} \operatorname{adj} A$
(c) $k^{n-1} \operatorname{adj} A$
(d) $k^{n+1} \operatorname{adj} A$

- **19.** If A and B are symmetric matrices of order $n (A \neq B)$, then
 - (a) A + B is a skew-symmetric matrix
 - (b) A + B is a symmetric matrix
 - (c) A + B is a diagonal matrix
 - (d) A + B is a zero matrix

20. If
$$F(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

and $G(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$, then $[F(\alpha)G(\beta)]^{-1} =$
(a) $F(\alpha) - G(\beta)$ (b) $-F(\alpha) - G(\beta)$
(c) $[F(\alpha)]^{-1}[G(\beta)]^{-1}$ (d) $[G(\beta)]^{-1}[F(\alpha)]^{-1}$

21. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ satisfies the equation $x^2 - (a + b)x + k$ = 0, then (a) k = bc (b) k = ad

(c)
$$k = a^2 + b^2 + c^2 + d^2$$
 (d) $k = ad - bc$

22. The singularity of matrix

$$\begin{bmatrix} 1 & a & a^2 \\ \cos(p-d)x & \cos px & \cos(p+d)x \\ \sin(p-d)x & \sin px & \sin(p+d)x \end{bmatrix}$$

depends on which of the following parameters?

(a)
$$a$$

(b) p
(c) x
(d) none of these
23. If $A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}$ and $B = \begin{bmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{bmatrix}$, then $AB =$
(a) A^3
(b) B^2
(c) 0
(d) I

www.qubitpune.com

Qubit Educational Services (by IISc Bangalore Alumnus)

(b) $A - B$ is a dia $B = \begin{bmatrix} \alpha & -1 \\ 2 & 5 \end{bmatrix}$ (c) $A - 4I$ is a ske (d) none of these 25. The value of a for $a^3x + (a + (a + b))$ has a non-zero sol (a) -1 (c) 1 26. The value of k for 3x + ky - 2 and	agonal matrix for any value of ew-symmetric matrix r which the system of equations $(x+1)^3 y + (a+2)^3 z = 0$ (a+1)y + (a+2)z = 0 (x+y+z=0) lution is (b) 0 (d) none of these r which the set of equations (2z=0, x+ky+3z=0) (2x+3y-4z=0)	$\begin{bmatrix} x+a & b & c \\ a & x+b & c \\ a & b & x+c \end{bmatrix}$ is non-singular are (a) $R-\{0\}$ (b) $R-\{-a(a+b+c)\}$ (c) $R-\{0,-(a+b+c)\}$ (d) none of these 29. Which of the following is a nilpotent matrix? (a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ 30. If $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$, then $19A^{-1}$ is equal to
(a) $\frac{33}{2}$	olution over the set of rationals (b) $\frac{31}{2}$	
(c) 16	(d) 15	ANSWERS
1. (b) 2. (b) 11. (b) 12. (a) 21. (d) 22. (c)	3. (d) 4. (c) 5. (13. (d) 14. (b) 15. (23. (c) 24. (b) 25. ((b) 16. (b) 17. (a) 18. (c) 19. (b) 20. (d)