- 1. If p and q are true and r and s are false then which of the following expressions has the truth value false?
 - (a) $p \lor (q \lor r)$
 - (b) $[p \land (q \land r)] \lor [(p \lor q) \land (r \lor s)]$
 - (c) $[\sim (p \land q) \lor \sim r] \lor \{[(\sim p \lor q) \lor \sim r] \land s\}$
 - (d) none of three
- 2. Which of the following is not a tautology?
 - (a) $(p \land q) \Rightarrow p$

(b)
$$(p \land q) \Rightarrow (p \Rightarrow q)$$

(c)
$$\sim (p \land q) \lor [(\sim p) \land q] \lor p$$

(d)
$$(q \Rightarrow p) \Rightarrow p$$

3. All equivalent formula for $p \land (q \Leftrightarrow r)$ which is free from biconditionals as wall as conditionals is

(a)
$$p \lor [(\sim q \lor r) \land (\sim r \lor q)]$$

(b)
$$p \wedge [(\sim q \lor r) \land (\sim r \lor q)]$$

(c)
$$p \wedge [(\sim q \wedge r) \wedge (\sim r \lor q)]$$

(d)
$$p \wedge [(\neg q \lor r) \land (\neg r \land q)]$$

- 4. Choose the correct alternative form the following:
 (i) (p ∧ q) → (p ∨ q) is a theorem
 - (ii) $(p \land q) \rightarrow (p \lor q)$ is a fallacy
 - (iii) $\sim (p \lor q) \leftrightarrow (\sim p \lor \sim q)$ is a fallacy
 - (iv) $(p \land q) \rightarrow (p \lor q)$ is a theorem
 - (a) (i) only (b) (i) and (iv)
 - (c) (i) and (iii) (d) none of these
- 5. The dual of the statement $(p \land q) \land r \equiv p \land (q \land r)$ is

(a)
$$(p \lor q) \land r \equiv p \land (q \lor r)$$

(b) $(p \lor q) \lor r \equiv p \land (q \lor r)$

- (c) $(p \lor q) \lor r \equiv p \lor (q \lor r)$
- (d) $(p \land q) \land r \equiv p \land (q \lor r)$
- 6. If p: 2 is an even number,

q: 2 is a prime number, and $r: 2+2=2^2$,

- then the symbolic statement $p \rightarrow (q \lor r)$ means
- (a) 2 is an even number and 2 is a prime number or $2+2=2^2$
- (b) 2 is an even number then 2 is a prime number or $2+2=2^2$
- (c) $2+2=2^2$ (c) 2 is an even number or 2 is a prime number then $2+2=2^2$
- (d) If 2 is not an even number, then 2 is a prime number or $2+2=2^2$
- 7. Let p : I am brave,

q: I will climb the mount Everest

The symbolic form of a statement,

'I am neither brave nor I will climb the mount Everest' is

- (a) $p \wedge q$ (b) $\sim (p \wedge q)$ (c) $\sim p \wedge \sim q$ (d) $\sim p \wedge q$
- 8. Which of the following is not logically equivalent to the proposition: 'A real number is either rational or irrational'.
 - (a) If a number is neither rational nor irrational, then it is not real
 - (b) If a number is not a rational or not an irrational, then it is not real
 - (c) If a number is not real, then it is neither rational nor irrational
 - (d) If a number is real, then it is rational or irrational

- **9.** The negation of the proposition: "If we control population growth, we prosper" is
 - (a) If we do not control population growth, we prosper
 - (b) If we control population growth, we do not prosper
 - (c) We control population but we do not prosper
 - (d) We do not control population, but we prosper
- 10. If p is any statement, t is tautology and c is a contradiction, then which of the following is not correct?
 - (a) $p \lor (\sim p) = c$ (b) $p \lor t = t$
 - (c) $p \wedge t = p$ (d) $p \wedge c = c$
- 11. Which of the following is a contradiction?
 - (a) $(p \land q) \land \sim (p \lor q)$ (b) $p \lor (-p \land q)$
 - (c) $(p \Rightarrow q) \Rightarrow p$ (d) none of these

- **12.** Which of the following is the inverse of the proposition: 'If a number is a prime, then it is odd'?
 - (a) If a number is not prime, then it is odd
 - (b) If a number is not prime, then it is even
 - (c) If a number is not odd, then it is not a prime
 - (d) If a number is not odd, then it is prime
- 13. The inverse of the statement 'If x is zero, then we cannot divide by x' is
 - (a) If we cannot divide by x, then x is zero
 - (b) If we cannot divide by x, then x is not zero
 - (c) If x is not zero, then we divide by x
 - (d) none of three
- 14. The negation of the statement $(p \lor q) \land r$ is
 - (a) $(\neg p \lor \neg q) \lor \neg q$ (b) $(\neg p \lor \neg q) \lor \neg r$
 - (c) $\sim (p \lor q) \rightarrow r$ (d) $p \land q$

ANSWERS

 1. (d)
 2. (d)
 3. (b)
 4. (a)
 5. (a)
 6. (b)
 7. (c)
 8. (b)
 9. (c)
 10. (a)

 11. (a)
 12. (b)
 13. (c)
 14. (b)
 9. (c)
 10. (a)
 9. (c)
 10. (a)

Qubit

Topic (i) Mathematical Induction

1. $3 + 3^2 + 3^3 + \dots + n$ terms is equal to (a) $\frac{3}{2}(3^n+1)$ (b) $\frac{3}{2}(3^n-1)$ (c) $3(3^n - 1)$ (d) $3(3^n + 1)$ **2.** $1+4+13+40+\dots+n$ terms is equal to (a) $\frac{3^{n+1}-2^n}{2n}$ (b) $\frac{3^{n+1}-2n-3}{4}$ (c) $\frac{3n-1+3n^n}{9}$ (d) $\frac{3^{n+1}+2n^2}{8}$ 3. $1+3+7+15+\dots+n$ terms is equal to (a) $2^{n+1} - n - 2$ (b) $n^2 + n - 2$ (c) $2^n + n^2 - n$ (d) none of these 4. Sum of the series $S = 1^2 - 2^2 + 3^2 - 4^2 + \dots - 2002^2$ $+ 2003^2$ is equal to (a) 2,007,006 (b) 1,005,004 (c) 2,000,506 (d) none of these 5. The positive interger *n* for which $2 \times 2^2 + 3 \times 2^3 + 4$ $\times 2^{4} + \dots + n \times 2^{n} = 2^{n+10}$ is equal to (b) 511 (a) 510 (c) 512 (d) 513 6. $1|1+2|2+3|3+\cdots+n|n$ is equal to (a) |n+1-1|(b) |n-1+1|(d) |n-1-1|(c) |n+1+1|7. $2 \cdot 4 + 4 \cdot 7 + 6 \cdot 10 + \dots + (n-1)$ terms is equal to (b) $\frac{n^3 + 3n^2 + 1}{6}$ (a) $2n^3 - 2n^2$ (c) $2n^3 + 2n$ (d) none of these 8. $3 \cdot 6 + 4 \cdot 7 + 5 \cdot 8 + \dots + (n-2)$ terms is equal to (a) $n^3 + n^2 + n + 2$ (b) $\frac{2n^3 + 12n^2 + 10n - 84}{6}$

(c)
$$\alpha n^3 + \beta n^2 + rn$$
 (d) $\frac{n^3 + 6n^2 + 5n - 42}{3}$
9. $1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + 3 \cdot 4 \cdot 5 + n$ terms is equal to
(a) $\frac{n(n+1)(n+2)(3n+5)}{12}$ (b) $\frac{n(n+1)(n+2)(n+3)}{4}$
(c) $2n(n+1)(n+2)(n+3)$ (d) $\frac{n(n+1)(n+2)(n+3)}{12}$
10. (1) + (1+3) + (1+3+5) + ... + n brackets is equal to
 $n(n+1)(n+2)$

(a)
$$\frac{n(n+1)(n+2)}{6}$$

(b) $\frac{n(n+1)(3n^2+23n+46)}{12}$
(c) $\frac{2(27n^3+90n^2+450-50)}{4}$
(d) $\frac{n(n+1)(2n+1)}{6}$

6

11. The sum of $(1^2) + (1^2 + 2^2) + (1^2 + 2^2 + 3^3) + \dots + n$ brackets is equal to

(a)
$$\frac{n(n+1)(n+2)}{6}$$

(b) $\frac{n(n+1)^2(n+2)}{12}$
(c) $\frac{2(27n^3+90n^2+450-50)}{4}$
(d) $\frac{n(n+1)(2n+1)}{6}$

12. The sum of n brackets of

(1) +
$$\left(\frac{1}{3} + \frac{1}{3^2}\right) + \left(\frac{1}{3^3} + \frac{1}{3^4} + \frac{1}{3^5}\right) + \cdots$$
 is equal to
(a) $\frac{(3^n - 1)^3}{2 \cdot 4^{n-1}}$ (b) $\frac{3^n - 1}{2 \cdot 3^{(n-1)(n+2)/2}}$
(c) $\frac{3^n + 1}{3 \cdot 7^{n-1}}$ (d) none of these

www.qubitpune.com

Qubit Educational Services (by IISc Bangalore Alumnus)

13. (1) + (2 + 3 + 4) + (5 + 6 + 7 + 8 + 9) + ... + *n* brackets is equal to

(a)
$$(n-1)^3 + n^3$$

(b) $(n+1)^3 + 8n^2$
(c) $\frac{(n+1)(n+2)}{6n}$
(d) $(n+1)^3 + n^3$

14. $(1) + (2+3) + (4+5+6) + \dots + n$ brackets is equal to

(a)
$$\frac{n(n+1)(n^2+n+2)}{8}$$
 (b) $\frac{n(n+1)(n^2-n+2)}{8}$
(c) $\frac{n(n-1)(n^2+n+2)}{8}$ (d) $\frac{n(n-1)(n^2-n+2)}{8}$

15. The value of the sum in the *n*th bracket of $(1) + (2 + 3) + (4+5+6+7) + (8+9+10+\dots+15) + \dots$ is equal to

(a)
$$2^{n}(2^{n}+2^{n-1}-1)$$
 (b) $2^{n-1}(2^{n}+2^{n-1}-1)$
(c) $2^{n-2}(2^{n}+2^{n-1}-1)$ (d) none of these

16. If the natural numbers are divided into groups of {1}
{2, 3} {4, 5, 6} {7, 8, 9, 10} ..., then the sum of 50 groups is equal to
(a) 62,525
(b) 65,225
(c) 56,255
(d) 55,625

17. $(1) + (2+3+4) + (5+6+7+6+9) + \dots + n$ brackets is equal to

(a)
$$\frac{n(1+2)(n+2)}{6}$$
 (b) $\frac{n^2(n^2+1)}{2}$
(c) $n(n+1)(2n+1)$ (d) $\frac{n(n+1)(2n+1)}{6}$

ANSWERS

		6. (a) 16. (a)	8. (d)	9. (b)	10. (d)

Qubit

1. The 14th term from the end in the expansion of $(\sqrt{x} - \sqrt{y})^{17}$ is

(a) ${}^{17}C_5 x^6 (-\sqrt{y})^5$	(b) ${}^{17}C_6(\sqrt{x})^{11}y^3$
(c) ${}^{17}C_4 x^{13/2} y^2$	(d) none of these

- 2. If n ∈ N, then the sum of the coefficients in the expansion of the binomial (5x-4y)ⁿ is
 (a) 1 (b) -1
 (c) 1 (d) 0
- 3. When 5⁹⁹ is divided by 13, the remainder is
 (a) 8
 (b) 9
 (c) 10
 (d) none of these
- 4. The number of values of r satisfying the equation ${}^{39}C_{3r-1} - {}^{39}C_{r^2} = {}^{39}C_{r^2-1} - {}^{39}C_{3r}$ is (a) 1 (b) 2
 - (a) 1 (b) 2 (c) 3 (d) 4
- 5. The number of elements in the set of values of r for which ${}^{18}C_{r-2} + 2 \cdot {}^{18}C_{r-1} + {}^{18}C_r \ge {}^{20}C_{13}$ is satisfied is (a) 4 (b) 5 (c) 7 (d) 10

6. If x is nearly equal to one, then the approximate value $mx^m - nx^n$

of
$$\frac{mx - nx}{m - n}$$
 is
(a) x^m (b) x^n
(c) x^{m+n} (d) none of these
If the coefficients of the nth $(n + 1)$ th and

7. If the coefficients of the *p*th, (p + 1)th and (p + 2)th terms in the expansion of $(1 + x)^n$ are in A.P., then

(a)
$$n^2 - 2np + 4p^2 = 0$$

(b) $n^2 - n(4p+1) + 4p^2 - 2 = 0$
(c) $n^2 - n(4p+1) + 4p^2 = 0$

(d) none of these

8.
$${}^{n}C_{0} - \frac{1}{2}{}^{n}C_{1} + \frac{1}{3}{}^{n}C_{2} - \dots + (-1)^{n}\frac{{}^{n}C_{n}}{n+1} =$$

(a) n (b) $\frac{1}{n}$
(c) $\frac{1}{n+1}$ (d) $\frac{1}{n-1}$

www.qubitpune.com

9.	The expansion of - (be valid, if	$\frac{1}{4-3x)^{1/2}}$ by binomi	al theorem will		(b) $6^{-\frac{1}{3}} \left[1 + \frac{x}{6} + \frac{2x^2}{6^2} + \cdots \right]$	
	(a) $x < 1$ (c) $-\frac{2}{\sqrt{3}} < x < \frac{2}{\sqrt{3}}$	(b) $ x < 1$ (d) none of	these		(c) $6^{\frac{1}{3}} \left[1 - \frac{x}{6} + \frac{2x^2}{6^2} - \cdots - \frac{1}{6} \right] \left[1 - \frac{x}{6} + \frac{2x^2}{6^2} - \cdots + \frac{1}{6} \right]$	
10.	The two consecutive	e terms in the expansi	on of $(3 + 2x)^{74}$		(d) $6^{-\frac{1}{3}} 1 - \frac{x}{6} + \frac{2x^2}{6^2} - \cdots$	
	 with equal coefficiency (a) 30th and 31st t (b) 29th and 30th t (c) 31st and 32nd t (d) 28th and 29th t 	erms erms terms			L	ith , 6th and 7th terms in the
11.		$_{m+1}$, then $\sum_{r=m}^{n} (n-1)$	$(r+1)^r C_m$ is	19.	The integer next above (a) 2^{m+1} as a factor	to $(\sqrt{3}+1)^{2m}$ contains
	equal to	(1) n+2 a			(a) 2^{m+2} as a factor (b) 2^{m+2} as a factor	
		(b) $^{n+2}C_{m+2}$			(c) 2^{m+3} as a factor	
	(c) $^{n+2}C_{m+1}$	(d) none of $(\pi/3) = (\pi/3) = $			(d) 2^m as a factor	
12.	terms free from rac	f $(7^{1/3} + 11^{1/9})^{65/61}$, licals is	the number of	20.		C_r , then the value of $C_1 + C_5 + C_5$
	(a) 730	(b) 715			$C_7 + C_9 + C_{11}$ is equal 1	
	(c) 725	(d) 750	15		(a) $2^{12} - 287$ (c) $2^{12} - C_3$	(b) $2^{12} - 165$ (d) $2^{12} - C - C$
13.	$(1 + x + x^2 + x^3)^3 = a_{10}$ is equal to	$a_0 + a_1 x + a_2 x^2 + \cdots$	$+a_{15}x^{15}$, then			
	(a) 99	(b) 101		21.		I number greater than 1. Then the end of the sum $99n + 1$ is
	(c) 100	(d) 110			(a) 3	(b) 4
14.		are the binomial coe			(c) 2	(d) none of these
		$(C_0^n, n \text{ being even, then})^n$, $(C_0 + C_1 + C_2)^n$		22.	The number of terms in the number of terms in the n $\in N$, is	the expansion of $\left(x^2 + 1 + \frac{1}{x^2}\right)^n$,
	(a) $n \cdot 2^n$	(b) $n \cdot 2^{n-1}$			(a) 2 <i>n</i>	(b) 3 <i>n</i>
	(c) $n \cdot 2^{n-2}$				(c) $2n+1$	(d) $3n+1$
15.	If $(1 + x + 2x^2)^{20} =$ $a_0 + a_2 + a_4 + \dots + a_4$	$a_0 + a_1 x + a_2 x^2 + \cdots$ a_{38} is equal to	$+a_{40}x^{40}$, then	23.	In the expansion of $\int x^3$	$\left(-\frac{1}{x^2}\right)^n$, $n \in N$, if the sum of
	(a) $2^{19}(2^{30}+1)$	(b) $2^{19}(2^{20} -$	-1)		the coefficients of x^5 and $(x) = 25$	
	(c) $2^{19}(2^{19}-1)$	(d) none of	these		(a) 25 (c) 15	(b) 20(d) none of these
16.	$C_1 + 2C_2 + 3C_3 + 40$	$C_4 + \dots + nC_n =$			n	
	(a) 2^n	(b) $n \cdot 2^n$		24.	If $(1+x)^n = \sum_{r=0}^n a_r x^r, b_r$	$=1+\frac{a_r}{a_{r-1}}$
	(c) $n \cdot 2^{n-1}$	(d) $n \cdot 2^{n+1}$				
17.	$\frac{1}{\sqrt[3]{6-3x}} =$				and $\prod_{r=1}^{n} b_r = \frac{(101)^{100}}{100!}$ then <i>n</i> is equal to	
	1 5	1			(a) 99	(b) 100
	(a) $6^{\frac{1}{3}} \left[1 - \frac{x}{6} - \frac{2x^2}{6^2} \right]$]			(c) 101	(d) none of these

www.qubitpune.com

Qubit Educational Services (by IISc Bangalore Alumnus)

25. If a and d are two (n + 1) terms of t $aC_0 - (a + d)C_1 + (a) \frac{a}{2^n}$	 28. The integral part of (4 + 2√5)²ⁿ⁺¹ (n ∈ N) is (a) an even number (b) an odd number (c) an even or an odd number depending upon the value 							
2	(b) <i>na</i>		of <i>n</i>					
(c) 0	(d) none of these		(d) no	ne of these				
26. The digit at units $17^{1995} + 11^{1995} - 7$	7 ¹⁹⁹⁵ is		29. If the t	erm indepen	dent of x in	$\left(\sqrt{x} + \frac{k}{r^2}\right)$	¹⁰ is 405, then	
(a) 0 (c) 2	(b) 1 (d) 3			lue of <i>k</i> is			,	
()	()		(a) 2		(b)	-2		
	ich x must lie so that the greatest $f(1 + x)^{2n}$ has the greatest c		(c) 3		(d)	none of th	nese	
is	I (I + x) has the greatest e		30. The co	oefficient of	x^{11} in the example 1	xpansion of	$f(2x^2 + x - 3)^6$	
	(b) $\left(\frac{n}{n+1}, \frac{n+1}{n}\right)$ (d) none of these		is (a) 38 (c) 57	4	(b)	192 64		
(c) $\left(\frac{n}{n+2}, \frac{n+2}{n}\right)$	(d) none of these							
		ANSV	VERS					
1. (c) 2. (a)	3. (a) 4. (b)	5. (c)	6. (c)	7. (b)	8. (c)	9. (d)	10. (a)	
11. (b) 12. (a)	13. (b) 14. (b)	15. (b)	16. (c)	17. (b)	18. (c)	19. (a)	20. (a)	
21. (c) 22. (c)	23. (c) 24. (b)	25. (c)	26. (a)	27. (b)	28. (a)	29. (c)	30. (b)	

Qubit

Topic iv) sets + Relations

- 1. In a group of 500 persons, if 350 can speak Hindi and 250 can speak English, then the number of persons speaking both the languages are
 - (a) 150 (b) 200
 - (c) 100 (d) 250
- 2. In a group of 150 persons, if 35 drink milk but not tea and 65 drink milk, then the number of persons who drink both tea and milk are
 - (a) 25 (b) 30
 - (c) 35 (d) none of these
- **3.** Cardinal number of $P(P(P(\phi)))$ is
 - (a) 1 (b) 2
 - (c) 3 (d) 4
- 4. A class of 100 students sat in an examination in maths and physics. Every student cleared at least 1 subject, 55 students cleared maths and 67 students cleared physics. Then the number of students who cleared physics only is
 - (a) 22 (b) 33
 - (c) 10 (d) 45

- 5. The smallest set such that $A \cup \{1, 2\} = \{1, 2, 3, 5, 9\}$ is (a) $\{1, 2\}$ (b) $\{1, 2, 3, 5, 9\}$
 - (c) $\{3, 5, 9\}$ (d) none of these
- 6. Consider the set A of all determinants of order 3 with entries 0 or 1 only. Let B be the subset of A consisting of all determinants with value 1. Let C be the subset of the set of all determinants with value -1. Then:
 - (a) B has as many elements as C
 - (b) $C = \phi$
 - (c) B has twice as many elements as C
 - (d) $A = B \cup C$
- 7. Let a binary operation ' \forall ' on Q (set of all rational numbers) be defined by $a \circ b = a + 2b$ for all $a, b \in Q$, then
 - (a) Q is closed under the given operation
 - (b) the given operation is commutative
 - (c) the given operation is associative
 - (d) Q is not closed

- 8. Let S be the set of integers. For $a, b \in S$, aRb if and only if |a-b| < 1, then
 - (a) R is not reflexive
 - (b) R is not symmetric
 - (c) $R = r = \{(a, a); a \in 1\}$
 - (d) R is not an equivalence relation
- 9. Let I be the set of integers, N the set of non-negative integers, N_p the set of non-positive integers, E the set of even integers and P the set of prime numbers. Then

(a)
$$N \cap N_p = \phi$$
 (b) $I \sim N = N_p$
(c) $N\Delta N_p = I \sim \{0\}$ (d) $E \cap P = \phi$

- **10.** X and Y are two sets and X has 40 elements, $X \cup Y$ has 60 elements and $X \cap Y$ has 10 elements. Then the number of elements in Y is
 - (a) 30 (b) 10
 - (c) 40 (d) 50
- 11. R is the relation "x is a brother of y" in the set of children in a family. Then R is
 - (a) reflexive(b) symmetric(c) transitive(d) none of these
- **12.** Let $f: N \to N$ be defined as

$$f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$$

Then f is

1	
(a) one-to-one	(b) one-to-one and onto
(c) onto	(d) none of these

13. For the sets of real numbers given by

$$R_{1} = \left\{ (x, y) : x \in \mathbb{R}, y \in \mathbb{R} \ x^{2} + y^{2} \le 25 \right\}$$

$$R_{2} = \left\{ (x, y) : x \in \mathbb{R}, y \in \mathbb{R}, \ 9y \ge 4x^{2} \right\}$$

$$R_{1} \cap R_{2} \text{ is}$$
(a) one-to-one
(b) onto
(c) one-to-one and onto

(d) none of these

- 14. A survey showed that 60% of the Indians like oranges whereas 75% like mangoes. If k % of the Indians like both oranges and mangoes, then
 - (a) $35 \le k \le 60$ (b) $45 \le k \le 60$
 - (c) $35 \ge k$ and $k \ge 60$ (d) none of these
- **15.** If $A = \{3, 5\}$ and $B = \{5, 6, 7\}$, then $(A \cap B) \times (A \cup B)$ is (a) $\{(5, 3), (5, 4), (5, 6)\}$ (b) $\{(5, 3), (5, 5), (5, 6), (5, 7)\}$
 - (c) $\{(6, 5), (6, 3), (6, 6), (6, 7)\}$
 - (d) none of these
- 16. If A and B are two sets and U is the universal set such that n(U) = 800, n(A) = 300, n(B) = 400 and $n(A \cap B) = 150$, then $n(A' \cap B')$ is equal to
 - (a) 400 (b) 150 (c) 350 (d) 250
- 17. If $A \subseteq B$, then (a) $A' \subseteq B'$ (b) A' = B'(c) $B' \subseteq A'$ (d) $B' \not \subseteq A'$
- **18.** If $A = \{x, y, t\}, B = \{x, z, u\}$ and $C = \{x, z, v\}$, then (a) $A - B = \{y, u\}$ (b) $B - C = \{z, v\}$
 - (c) $C A = \{x, t\}$
 - (d) none of these
- **19.** Let $A = Z \cup \{\sqrt{2}\}$. Define a relation R in A by aRb if and only if $a + b \in Z$. The relation R is then
 - (a) reflexive
 - (b) symmetric and transitive
 - (c) only transitive
 - (d) none of these

20. If
$$f(x) = 1 - \frac{1}{x}$$
, then $f\left[f\left(\frac{1}{x}\right)\right]$ is
(a) $\frac{1}{x}$ (b) $\frac{1}{1+x}$
(c) $\frac{x}{x-1}$ (d) $\frac{1}{x-1}$

ANSWERS

1. (c)	2. (b)	3. (d)	4. (d)	5. (c)	6. (c)	7. (a)	8. (c)	9. (c)	10. (a)
11. (c)	12. (c)	13. (d)	14. (a)	15. (b)	16. (d)	17. (c)	18. (d)	19. (b)	20. (d)